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Abstract
Diamond has attracted tremendous attention in materials science and engineering, owing to its
superior mechanical, thermal, electrical and optical properties. However, its applications in
biomedical fields are constrained by its mechanical rigidity, high temperature fabrication and
difficulties of integration with flexible platforms. In this paper, we develop a facile process to
form large-area, freestanding diamond thin films and combine them with optoelectronic devices
on flexible substrates. Obtained undoped diamond (UD) and boron doped diamond (BDD) films
are comprehensively investigated, in terms of their structural, morphological, optical and
electrochemical characteristics. On flexible substrates, electrically conductive BDD films are
employed as an electrochemical sensor for dopamine detection in aqueous solutions, while
optically transparent and thermally conductive UD films can effectively promote heat
dissipation of microscale light-emitting diodes. Finally, in vitro cytotoxicity study demonstrates
the desirable biocompatibility of these diamond films. The presented techniques remove barriers
in the manufacturing and heterogeneous integration of freestanding thin-film diamond materials,
and provide promising paths to their broad applications in flexible biointegrated systems.
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1. Introduction

Over the past decades, diamond has been regarded as an
important engineering material [1] and received tremend-
ous attention due to its ultrahigh thermal conductivity [2, 3],
ultrawide bandgap [4], superior hardness [5], broadband
optical transparency [6] and desirable chemical stability [7]. It
has been widely explored for academic research and industrial
development, from conventional applications like mechanical
processing [8, 9] and heat management packaging [10, 11], to
emerging studies include high-power electronics [12–15] and
quantum computing [16, 17].

More recently, diamond-based materials have also found
particular interests in biological fields. For example, because
of its broadband optical transparency and ultrahigh thermal
conductivity, undoped diamond (UD) can be integrated with
optogenetic devices like light-emitting diodes (LEDs) to
facilitate heat dissipation during operation [18]. In addition,
boron doped diamond (BDD) exhibits superior electrochem-
ical properties including wide electrochemical window, low
impedance, and high corrosion resistance, leading to an ideal
solution to biological and chemical sensors [19, 20]. Fur-
thermore, the desirable biocompatibility and aqueous stabil-
ity of diamond endow it with great potential for biomed-
ical and specifically implantable devices [21–23]. Recently
reported examples include electrochemical detectors [20, 24],
BDD-based implantable biochemical sensors [25, 26], and our
recently developed wireless, implantable optoelectrochemical
probe for optogenetic stimulation and dopamine (DA) detec-
tion with combined LEDs and diamond [27].

Despite its unique features, the utilization of diamond for
widespread biomedical applications is still limited by its pro-
cessing technologies and difficulties in its integration with het-
erogeneous devices and substrates. High-quality diamond thin
films are commonly synthesized on rigid substrates like sil-
icon or molybdenum via chemical vapor deposition (CVD) at
elevated temperatures (500 ◦C–1200 ◦C) with potential uses
of plasma bombardment [28], which impedes their integra-
tion with flexible, bendable, and biocompatible for wearable
or implantable uses [29]. Practical methods for preparing
freestanding diamond thin filmswere previously demonstrated
by growing and patterning CVD diamond on silicon diox-
ide (SiO2) coated Si substrates, and subsequently separating
the film from origin substrates by removing the SiO2 sacri-
ficial layer in hydrofluoric acid (HF) [20, 25, 30, 31]. These
demonstrated technologies typically require relatively com-
plex multi-step fabrication and patterning, which is also dif-
ficult to achieve films with large areas. Prior arts also demon-
strate thin-film diamond materials peeled off from quartz
[32, 33] and tantalum [34–36], by employing low adhe-
sion interfaces between diamond films and substrates dur-
ing growth. The size of diamond membranes could be con-
strained by the substrates. Therefore, it is desirable to realize
large-scale, freestanding diamond thin films, which can be fur-
ther combined with heterogeneous devices and substrates for
potential biointegration.

In this paper, we develop materials and process strategies to
form bothUD andBDD thin films via a simplified and efficient

approach, and heterogeneously integrate them with flexible
substrates and optoelectronic devices. Surface morphologies,
structural and optical properties of these films are experiment-
ally investigated. Furthermore, we demonstrate their capabilit-
ies of electrochemical sensing of DA with BDD films and heat
dissipation of microscale LEDs (micro-LEDs) with UD films.
Finally, cell culture studies in vitro illustrate the biocompatib-
ility of released diamond films. These results offer simple and
reliable routes to various types of diamondmembranes that are
manufacturable, transferable, and biocompatible, and provide
unprecedented opportunities for high performance biointeg-
rated systems.

2. Experiments and results

Figure 1(a) schematically illustrates the process flow to form
the large-area, freestanding diamond films. The fabrication
begins with growing diamond thin films (with a thickness of
∼10 µm) on single crystalline silicon (100) substrates (with
a diameter of 50 mm) via CVD. Before growth, Si substrates
are abraded by sand paper (800#) and then cleaned ultrasonic-
ally in acetone for 15 min. The diamond films are synthesized
by using a microwave plasma CVD system with a plasma fre-
quency of 2.45 GHz. CH4 and H2 are fed into the chamber
with a total reactor pressure of 40 Torr. Deposition temperat-
ure is 800 ◦C, and deposition rate is∼2 µm h−1. For the BDD
film deposition, the B2H6 diluted by H2 to 2 vol% is used as
the doping source. The boron to carbon atom ratio in the react
gas is 5000 ppm. After cleaning the as-grown diamond with
acetone, isopropyl alcohol and deionized (DI) water, an adhes-
ive stamp made of polydimethylsiloxane (PDMS) elastomer
is attached to the top side of the diamond membrane, serving
as a temporary holder during the etching process of the sac-
rificial substrate. Followed by immersing the Si wafers in an
etchant solution (CH3COOH:HNO3:HF = 5:5:5, by volume)
for half an hour to completely remove the Si substrate, large-
area and freestanding diamond films are obtained and attached
on PDMS. Via transfer printing, diamond thin films released
from original Si substrates can be heterogeneously integrated
onto any foreign substrates of interest. Representative images
of released diamond films (thickness ≈ 10 µm; size ≈ 1 cm2)
on flexible PDMS and polyethylene terephthalate (PET) sub-
strates are shown in figures 1(b) and (c), respectively. It is
noted that these 10 µm thick diamond membranes bonded on
flexible sheets certainly do not possess ideal mechanical per-
formance under bending and could be easily fractured. The
flexibility of these heterogeneous structures with rigid dia-
mond films can be further optimized, with examples that can
be found in other inorganic materials like silicon and glass,
by reducing the diamond film size and thickness [37], placing
the diamond layer in the neutral plane [38] or adapting ser-
pentine structures [39], etc. Laser milling can be applied to
form diamond films with designed sizes and shapes for various
purposes, as depicted in figure 1(d). Here the diamond films
are patterned on silicon growth wafers prior to the wet etch-
ing, with a Nd:YVO4 laser (wavelength 1064 nm, peak power
7 W, pulse repetition rate 1 MHz, scan speed 1 m s−1, and
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Figure 1. (a) Schematic illustration of processing flow for diamond film fabrication, including CVD, Si substrate etching and transfer
printing. (b) and (c) Freestanding diamond films on (b) PDMS and (c) PET based flexible substrates. (d) Micrograph of thin-film diamond
arrays formed by laser milling. (e)–(j) SEM and AFM images for (e)–(g) front and (h)–(j) back sides of a freestanding diamond film.

scan repetition 200 times). Surface morphologies of released
diamond films are examined with scanning electron micro-
scopy (SEM, Merlin VP Compact, Zeiss) and atomic force
microscopy (AFM, Multimode 8 SPM, Bruker), as illustrated
in figures 1(e)–(j). Due to the abnormal grain growth of the

polycrystalline films, the front and back sides of the dia-
mond film exhibit significantly different surface morphologies
[25, 40–43]. The front side of the sample that exposes to air has
an obviously larger average grain size than the back side that
interfaces with the Si substrate, thereby resulting in a larger
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Figure 2. (a) XRD patterns and (b) Raman spectra of UD and BDD films.

Figure 3. (a) Transmittance and (b) reflectance spectrum for UD and BDD film in the visible range.

roughness (root mean square roughness: 783 nm for front side
versus 24 nm for back side).

Through the abovementioned film growth and release
processes, both UD and BDD (doping concentration
∼ 1021 cm−3) films can be fabricated. Structural character-
istics of UD and BDD films are studied by x-ray diffraction
(XRD) (SmartLab, Rigaku, with a Cu kα source) and Raman
spectroscopy (confocal microscope, iHR550, Horiba, with an
excitation wavelength of 532 nm). The results are presented
and compared in figure 2. As XRD patterns shown figure 2(a),
both UD and BDD films have a polycrystalline diamond struc-
ture, with diffraction peaks at ∼43.9◦, ∼75.3◦ and ∼91.5◦,
corresponding to (111), (220) and (311) planes of diamond,
respectively [44, 45]. Impacts of boron doping can be revealed
more clearly in the Raman spectra (figure 2(b)). The UD film
shows a single diamond (sp3 carbon bond) peak at approxim-
ately 1332 cm−1, indicating a high degree of crystallinity and
purity [46–49]. By contrast, the BDD film shows lower crystal
quality and owns additional peaks at around 472 cm−1 and
1220 cm−1, resulting from boron dopants incorporated into
the lattice [50, 51]. Additionally, the diamond characteristic
peak (related to the sp3 carbon bond) for BDD is downshifted
to ∼1305 cm−1, and considerably attenuated and broadened

due to the boron doping [28, 52, 53]. Moreover, the broadband
signal from 1450 cm−1 to 1750 cm−1 can be attributed to the
presence of impurities and defects accompanied by the lattice
mismatch between boron and carbon [25, 54–56].

To evaluate the potential of these diamond films for opto-
electronic applications, optical transmittance and reflectance
spectra for UD and BDD films (thickness ∼10 µm) are
measured, with a spectrophotometer (Cary 5000, Agilent)
(figure 3). Because of the strong optical scattering induced by
the rough surface, an integrating sphere accessory is employed
to capture the diffused light. Resulting from the heavy boron
doping, the released BDD film is optically opaque, with nearly
0% transmittance and less than 20% reflectance in the visible
range. As a comparison, the UD film exhibits∼40% transmit-
tance and ∼50% reflectance from 400 nm to 700 nm, leading
to an absorption loss of around 10%. The high transparency of
the UD film suggests that it could serve as an optical window
for optoelectronic devices on flexible platforms.

Accompanied by the strong optical losses, the heavy boron
doping also induces a high electrical conductivity, which
implies that the BDD film could work as an effective elec-
trochemical sensor. In figure 4, we evaluate its sensing cap-
ability by detecting DA in aqueous solutions. Measured by
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Figure 4. Electrochemical properties of a BDD film. (a) DPV curves of the film in aqueous solutions with various concentrations of DA.
(b) CA curves of the BDD film in PBS solution with varied DA concentrations (unit: µM). Insert: calibration curve, linear relationship
between response currents and DA concentrations (0.1–100 µM).

a four-point probe tester (RTS-9, 4 PROBES TECH), the
electrical resistivity of the BDD film transferred onto a flex-
ible substrate is determined to be ∼2.8 × 10−5 Ω m. To
form electrochemical sensors, BDD films with a size of
150 µm × 200 µm are transferred onto polyimide (PI)
substrates, and metalized with sputter-coated Cr (5 nm)/
Cu (600 nm)/Au (200 nm) films as contacts. Because of the
large surface area, the front side of BDD diamond film is
applied for chemical sensing. A photoresist film (SU-8, thick-
ness 5µm) serves as the protective coating onmetal electrodes.
The DA detection is performed with an electrochemical work-
station (CHI 650E, Shanghai Chenhua Co., Ltd, China), with
a standard three-electrode configuration. The BDD film, sil-
ver/silver chloride (Ag/AgCl) and platinum (Pt) serve as the
working, the reference and the counter electrodes, respect-
ively. A dilute hydrochloric acid (HCl) solution (pH = 4.0)
is used as the solvent for DA, in order to mitigate its degrada-
tion due to natural oxidation in air [27, 57]. Differential pulse
voltammetry (DPV) and chronoamperometry (CA) methods
are utilized to analyze the electrochemical properties of the
BDD film. In the DPV tests, measurement configurations are
as follows: voltage step = 4 mV, pulse time = 200 ms, pulse
amplitude = 50 mV, and HCl solutions have DA concen-
trations of 5 µM, 10 µM, 50 µM, 100 µM, 500 µM and
1 mM. As shown in figure 4(a), well-defined oxidation peaks
are observed in the presence of DA, with oxidation poten-
tials of about 0.3 V, and peak oxidation currents increase with
the DA concentration. The dynamic current response at var-
ied DA concentrations is further analyzed using CA measure-
ments at a fixed bias voltage of 0.6 V (figure 4(b)). As the
DA concentration varies in the range of 0.1–100 µM, recor-
ded electrochemical current dynamically, resulting in a lin-
ear relation (figure 4(c)). The DA detection limit is determ-
ined to be around 5 µM, and the detection sensitivity is
∼0.045 nA µM−1. The normalized current response of DA
by area is calculated to be ∼150 nA µM cm−2, comparable
with other studies [58]. The sensitivity of the BDD film is
slightly lower than that of our previously reported UD dia-
mond film coated with PEDOT:PSS [27]. By engineering
the doping profile and surface modification (conducting poly-
mers, metal nanoparticles, carbon-based materials, etc), these

diamond films can obtain further improved electrochemical
performance, and find their use in biochemical detection
in vivo [25, 59].

Patterned microscale UD films are heterogeneously integ-
rated with micro-LEDs to exploit their optical and thermal fea-
tures (figures 5 and 6). Schematically shown in figure 5(a),
here we design and fabricate three different device configura-
tions: a bare micro-LED on a copper (Cu; 18 µm)/polyimide
(PI; 25 µm)/copper substrate (Cu; 18 µm), a micro-LED on
diamond on Cu/PI/Cu, and a micro-LED with diamond on
top on Cu/PI/Cu, and the smooth side of the UD film dir-
ectly contacts with the micro-LED to minimize the diffuse
reflection. For the blue micro-LEDs, their fabrication, trans-
fer processes, electronic and optical characteristics can be
found in previous reports [60, 61]. Corresponding photographs
of the integrated needle-shape devices after laser milling are
shown in figure 5(b). External quantum efficiencies (EQEs)
for micro-LEDs in the above three different configurations are
measured within an integrating sphere (Labsphere Inc.) and
plotted as a function of injection currents in figure 5(c). The
maximum EQE is ∼12% for the bare micro-LED and ∼10%
for the micro-LED with diamond on top. The slight perform-
ance degradation (by ∼20%) is in accordance with the low
optical losses of the UD film (figure 3). For the micro-LED on
diamond on Cu/PI/Cu, the maximum EQE is ∼11%, slightly
lower than the bare LED due to the absorption of light trans-
mitted from LED backside by defects in the diamond. Far-
field angular emission profiles of the micro-LEDs with dif-
ferent configurations are measured and shown in figure 5(d).
Here the devices are mounted onto a goniometer and the
measurement is taken from −90◦ to 90◦ in a step of 5◦, at
an injection current of 3 mA. The emission intensity is cap-
tured by a standard Si photodetector (DET36A, Thorlabs). The
nearly Lambertian emission patterns are observed for all the
devices. These results indicate that the diamond films integ-
rated with the micro-LEDs do not greatly alter their emission
characteristics.

Due to its ultrahigh thermal conductivity, diamond has
been used as a heat spreader for high power devices, such
as laser diodes and multichip modules [62]. Previously repor-
ted diamond films exhibit thermal conductivities ranging from
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Figure 5. (a) Schematics and (b) corresponding images of UD films integrated with blue micro-LEDs. Left: a bare LED on the
copper/polyimide/copper (Cu/PI/Cu) substrate; middle: an LED on diamond on Cu/PI/Cu; right: an LED with diamond on top on Cu/PI/Cu.
(c) EQEs versus injection currents and (d) angular distribution of optical emissions for LEDs in different configurations.

700 W m−1 K−1 to 2200 W m−1 K−1 [3, 63–65], higher than
metals like copper (395Wm−1 K−1) and orders of magnitude
higher than that of organic coatings such as SU-8 and PDMS
(<1WmK−1). Such a thermally conductive coating is advant-
ageous for heat dissipation of micro-LEDs. In figure 6, we
evaluate thermal behaviors of the micro-LEDs with different
configurations using an infrared camera (FOTRIC 228) with a
25 µm close-up lens, which is calibrated with a hot plate with
standard digital temperature indicators. Meanwhile, numerical
models based on finite element analysis (Comsol Multiphys-
ics) are established to simulate the thermal distributions. In
the thermal model, thermal conductivities for various materi-
als are 2000Wm−1 K−1 for diamond, 0.15Wm−1 K−1 for PI
and SU8, 400 W m−1 K−1 for copper and 0.16 W m−1 K−1

for PDMS. With micro-LEDs operated in ambient air under
constant current injections varied from 0 to 10 mA, experi-
mental and calculation results (figure 6(a)) suggest that the
temperature rises during operation for micro-LEDs can be
reduced by ∼20% at most, when integrating with UD films.
We also note that the positions of the UD films have little
effect on the maximum temperature rises for micro-LEDs.
Measured and calculated thermal maps for micro-LED probes
with different configurations are further depicted and com-
pared in figures 6(b)–(d), under an injection current of 5 mA.
These results show that the diamond obtained in this work

can effectively facilitate the heat dissipation of micro-LEDs,
which is critically important for biomedical applications such
as deep brain optogenetic stimulations, since the mitigation
of unwanted abnormal activities and possible tissue damage
by overheating is crucial for neural systems. Besides serving
as an efficient heat sinker for devices on organic based sub-
strates, other possibilities involve the development of diamond
based high-power, high-speed electronic devices on flexible
platforms [66, 67].

In order to reveal the biocompatibility of these diamond
films, cytotoxicity tests are conducted by in vitro cell culturing
and viability evaluations on the sample surfaces. Original UD
and BDD films have hydrophobic surfaces [68, 69], which are
undesirable for in vitro cell culturing. To promote cell adhe-
sion and proliferation, all the diamond films are immersed
in a DA solution (2 mg ml−1 in 10 mM Tris-HCl buffer,
pH = 8.5) for 2 h to form a hydrophilic polydopamine coat-
ing [70] and rinsed three times with DI water to remove the
unattached polydopamine molecules. Subsequently, UD and
BDD films are sterilized in 75% ethanol for 15 min, fol-
lowed by ultraviolet irradiation for 1 h. Human bone marrow-
derived mesenchymal stem cells (hBMSCs) (#7500, Science-
Cell, USA) are cultured in a mesenchymal stem cell medium
(#7510, ScienceCell) with 10% fetal bovine serum and 1%
penicillin–streptomycin in a humid atmosphere containing 5%
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Figure 6. (a) Measured (dots) and simulated (dashed lines) maximum temperature rises above room temperature on the top surface of the
LED probes integrating UD films with different configurations. (b)–(d) Measured (left) and simulated (right) temperature distributions for
LED probes with different configurations (under an injection current of 5 mA): (b) LED with diamond on top, (c) LED on diamond and
(d) bare LED.

Figure 7. In vitro biocompatibility tests for UD and BDD films. (a) Fluorescent images showing the proliferation behaviors for hBMSCs at
different time points. In a live/dead viability assay, living cells cause green fluorescence and dead cells cause red fluorescence.
(b) Comparison of cell viability (percentage of living cells) after culturing for 1, 3, and 7 d. Results are presented as mean ± standard
deviation. (n = 3 groups for each sample).
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CO2. The cell culture medium is replaced every 2 d. Cultured
hBMSCs are separately seeded on the rough side of UD,
BDD and standard 48-well cell culture plate at a density of
∼40 cells mm−2. Live/dead staining is performed after the
cells are cultured for 1, 3, and 7 d. Before the analysis of cell
proliferation, all of the samples are washed with phosphate
buffered saline (PBS) twice and stained with a calcein-AM
(for live cells) and propidium iodide (for dead cells) mixed
solution (KeyGEN BioTECH, China) for 30 min. A fluores-
cence microscope (Olympus) is used to observe the distri-
bution of living and dead cells on the samples. Figure 7(a)
shows the growth and proliferation behaviors of hBMSCs, as
demonstrated by a set of representative fluorescent images on
days 1, 4, and 7, and the living and dead cells are marked
with green and red fluorescence, respectively. The statistical
results (live/dead cell counting) are taken from fluorescence
images in three different areas for each sample, and n = 3
samples for both UD and BDD films. On the whole, the hBM-
SCs interact and adhere well to all of the samples, proliferat-
ing significantly within 7 d. In regards to the cellular morpho-
logies and viabilities (between 89% and 100%), there are no
significant difference among these three groups (figure 7(b)),
which indicates an absence of cell toxic effects for diamond
films throughout the duration of the experiment. In vitro cyto-
toxicity tests confirm that both UD and BDD films are fully
biocompatible, which can be readily employed in implantable
optoelectronic systems for biomedical uses, such as electro-
chemical sensing and optogenetic stimulation in neuroscience
research.

3. Conclusion

In summary, we introduce a simplified fabrication approach
to effectively form freestanding polycrystalline diamond thin
films and deterministically implement them with flexible elec-
tronic systems. UD and BDD films are released from sil-
icon substrates and comprehensively investigated in terms
of their morphological, structural and optical properties, as
well as their biocompatibilities. Large-area and freestand-
ing diamond thin films are obtained and attached on flex-
ible substrates. In flexible microsystems, microscale BDD
sheets are integrated with flexible substrates for electrochem-
ical demonstration, while thermal and optical properties of
micro-LEDs probe integrated with UD films are systematic-
ally studied. With further size reduction, such diamond films
can be integrated with microscale devices to realize flexible
and multifunctional biomedical microsystems. By engineer-
ing the doping profile and surface modification, these dia-
mond films can obtain further improved electrochemical per-
formance, and find their use in biochemical detection in vivo
[25, 59]. Besides serving as an efficient heat sinker for devices
on organic based substrates, other possibilities involve the
development of diamond based high-power, high-speed elec-
tronic devices on flexible platforms [66, 67]. Collectively,
these material and device strategies provide promising paths
to the broad applications of thin-film diamond in biointegrated
systems.
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